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HEAT TRANSFER IN A LIQUID METAL FLOWING

TURBULENTLY THROUGH A CHANNEL WITH A

STEP FUNCTION BOUNDARY TEMPERATURE*

By H. F. Poppendiek

ABSTRACT

An analytical heat transfer solution is derived and evaluated for

the general case of a turbulently flowing liquid metal which suddenly

encounters a step-function boundary temperature in a channel system.

Local Nusselt moduli, dimensionless mixed-mean fluid temperatures,

and arithmetic-mean Nusselt moduli are given as functions of Reynolds

and Prandtl moduli and a dimensionless axial-distance modulus. These

solutions are compared with known solutions of more specific systems

as well as with a set of experimental liquid-metal heat transfer data for

a thermal entrance region.

'_Originally prepared as Report ZPh-015, by the Physics Section of

CONVAIR, a division of General Dynamics Corporation. Reproduced in

the original form by NASA, with CONVAIR permission, to increase

availability.
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NOMENCLATURE

SYMBOLS

a,

A n ,

b_

b ,
n

C,

C
1'

CI, c2,

ep,

fir) ,

h ,
am

h X ,

Jo,Yo ,

k_

P,

S,

t,

t ,
m

thermal molecular dlffuslvity, k/Tc , ft2/hr
P

series coefficients in equation t14) defined by equatlon (15),
dimensionless

half the channel breadth (see Figure 1), ft

series coefficients in equations (11) and (13), dimensionless

constant in equation (37)

constant in equation (30), dimensionless

constants in the general solutioa, equation (9), dimensionless

heat capacity, Btu/lb °F

a function of the variable r, dimensionless

arithmetic mean unit thermal conductance or heat tranMer

coefficient, --qA-A/Atam , Btu/hr ft2°F

local unit thermal conductance _r heat transfer coefficient,

(qA)x/(t w - tm), Btu/hr ft2°F

zero order Bessel functions of the first and second kind,

respectively

derivatives of the zero order Bessel functions of the first

and second kind, respectively, with respect to the argument

thermal conductivity, Btu/hr ft _ (°F/ft)

constant in equation (37)

local heat flux, Btu/hr ft 2

a function of x and y given by equation (37), dimensionless

liquid-metal temperature at some point x, y, °F

mixed-mean fluid temperature, °F
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SYMBOLS (Continued)

t
i

W

t ,
0

uniform wall temperature (step function), °F

initial liquid-metal temperature (see Figure 1), °F

Ul liquid-metal velocity profile (function of y), ft/hr

U_

U ,
O

mean or uniform liquid-metal velocity, ft/hr

sum of J and Y functions in equation (11)
O O

W_ independent variable defined in equation (39), dimensionless

xpy,

At
am

)

V B

Cartesian coordinates, ft

arithmetic-mean temperature difference,

eddy diffusivtty, ft2/lu •

kinematic viscosity, ft2/hr

(t -t) + (t -t )
W o w m

,°F

_J

n

parameter arising in the separation-of-variables technique, dimensionless

eigenvalues of equation 12, dimensionless

weight density, lb/ft 3

F, gamma function

DIMENSIONLESS MODULI

4
F -

o Pe

4C
1

F1 -'-'--5-.1

h 4b
X

Nu_. = local Nusselt modulus
1_--'X

h 4b
am

Nu =_ , arithmetic-mean Nnsselt modulus
am k

Pe = Re . Pr , Peclet modulus

_/C P

P
Pr - , Prandtl modulus

k



DIMENSIONLESS MODULI (Continued)

U4b
Re-

v
, channel Reynolds modulus

r= F +Fy
o 1

t-t
W

T-
t -t
O W

1

Tm _ TdY

X
X_ m

b

y=Y
b



INTRODUCTION

It is well known that the convective heat transfer tn the entrance regions of duct

systems where thermal and hydrodynamic boundary layers are not yet established can

be far superior to heat transfer in the established flow regions. A quantitative under-

standing of thts type of heat transfer, sometimes called entrance region heat transfer,

is essential when designing high heat-flux cooling systems for rocket motors, nuclear

reactors, exhaust nozzles, and missile nose cones. Because the liquid metals are the

most effective high-temperature coolants known, they are considered exclusively In

this report. Further, In many practical flow systems the hydrodynamic boundary layers

have been completely or almost completely established before tile thermal entrance

region is encountered. Therefore, the work presented deals with heat transfer In the

thermal entrance region with an established velocity field.

A thermal entrance region results when a thermally established fluid, flowing In a

duct of uniform cross section, suddenly encounters duct surface with some new boundary

temperature distribution. Under these circumstances the temperature field in the fluid

is no longer established and thus greatly influences the local convective heat transfer.

As an example, for a step function boundary temperature entrance region the heat

transfer can be very high because the thin thermal boundary layers have low thermal

resistances.
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A limited number of turbulent flow entrance region solutions for ducts are avail-

able in the literature. Sanders (1) has obtained a turbulent flow solution for a step

function entrance region in a pipe by transforming th _ turbulent core to a laminar

core of equivalent thermal resistance. Seban and Shimazaki (2) have obtained some

specific numerical solutions for the uniform wall-heat-flux entrance region in a

pipe. Elser (3) obtained a simplified solution for onl¢ the initial portion of the ther-

mal entrance region of a pipe containing a turbulent !luid and a step function wall

temperature distribution. Several mathematical arm yses for forced convection heat

transfer in thermal entrance regions for low Prandtl modulus (liquid metal) systems

were presented previously (4); three dealt with low, t lrbulent Reynolds moduli (radial

heat flow by conduction only) and two others dealt witt_ all turbulent Reynolds moduli

(radial heat flow by eddy transfer as well as conducti(,n). The solutions for the latter

two problems had been completed but not evaluated. 3he solution has since been ewdu-

ated and the results are presented. The solution des( rlbes the general case of turbu-

lently flowing liquid metal which suddenly encounters a step function boundary temperature

in a channel system. The derivation of the mathemat cal solution is presented. Local

Nusselt moduli, dimensionless mixed-mean fluid tem)eratures, and arithmetic-mean

Nusselt moduli are given as functions of Reynolds and Prandtl moduli and a dimension-

less axial-distance modulus. The solution is shown t,) reduce correctly to known specific

solutions of the general case. Also the solution is co_npared with a set of experimental

liquid-retrial heat transfer data previously obtained in a thermal entrance region.



ANALYSIS

Theidealizedsystemwhichdefinesheattransfer in a liquid metal flowing

turbulently througha channel(betweentwoparallel platesof infinite extent)with a

step function boundary temperature is based on the following postulates:

1) The wall temperature distribution is a simple step function,

t= t o for x < 0 andt= tw forx > 0. The fluid approaching the en-

trance region has an established temperature, t o (see Figure 1).

2) Longitudinal heat conduction is small compared to convection and

is neglected (see Appendix 1).

3) The established turbulent velocity profile is represented by a uni-

form disiribution u = U, (see Appendix 2).

4) The eddy diffusivity distribution varies linearly with distance from

the wall and as the nine tenths power of the Reynolds modulus,
E

-_ =C1 Re0"9 y , (see Appendix 3).
b

5) The fluid properties are invariant with temperature.

6) Steady state exists.

The differential equation describing the convective heat transfer in dimension-

less form is (see Appendix 3)

0 T = _ 4 +.__..!_1 0T (1)
8X Oy 0.1

Re

This equation can be expressed in a simpler form by making the change of variable,

_ FlY'

4C
4 I

r = -- _ -- y = F° 4 (2)
Pc Re0. i
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The resulting boundary value problem to be solved is,

F 2 2 F 2
0T 1 a T 1 1 aT

3X 4 Or 2 4 r Or
(3)

T (o, r) = 1 (4)

T(X,_o ) = 0 (5)

LOT(X'orFo__l ) = 0 (6)

limT(X,r) =0
)f*.o

(7)

This problem can be solved by the separation-of-variables technique. Let

T = _I(X), _2(r) (8)

where _I(X) and (b2(r) are functions of X and r, respectively. Upon substituting

equation (8) into equation (3), two total differential equations result. One involvcs

¢I(X) and the other _2(r). Their solution yields,

e-[32X 1 Jo + c2 Yo\_ 1
T

1 /

where p is the parameter arising in the separation-of-variables technique and c 1

and c 2 are constants in the general solution.

(9)

From equation (5), the constant, Cl, is found to be
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(10)

Thus

T _

J
o

° t2 j 2_

\_v-o:
,

o I FI

= e U (11)o 1

The constant _ can be evaluated by substituting the temperature function, T,

into the boundary condition given by equation (6). The r_sulting expression is,

which is the etgenfunction. The terms _ are the elgenvalues (n = 1, 2, 3 . . . ) .
n

The constant e 2 in equation (11) Is now replaced by the constants bn(n = 1, 2, 3 .... )

corresponding to the values, _ . The constants, b , cm_ be evaluated from the boundary
n n

condition given by equation (4),

OO

1--_ _u ° ,
_.F1

n=l Jo

(13)

It can be shown (see Appendix 4) that a function f(r) can be expanded into a Uo_- r;
\ I /

series over the interval r1 to r 2 ,



ll

where

(12

f(r) _ A n

n=l

r

/2r f(r)U

\I

1
A =

2 _n
rU -

o

1

dr

dr

(14)

(15)

For the boundary value problem being considered f(r) = 1.

(14),

From equations (13) and

b = Jo A (16)n n

Thus, the temperature solution is,

T=_=I An e-_nX yo _F_ F_ol jo_2F_r_ + Jo_F'_--_l_o_Yo_ (17)

where the coefficients A
I1

by equation (12).

aro given by equation (15) and the eigenvalues are defined

As X approaches zero, many terms are required to obtain convergence in the

series solution given by equation (17). Thus, it is convenient to use an asymptotic

solution in that region (see Appendix 5).
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1
The mixed-mean fluid temperature , t

m
form as

Tm=_0 TdY " 2/_I Trdr

, car be exprenmed in dimensionlenm

(18)

The local Nusnelt modulus, Nu , can be expressed as,
X

h 4b
X

Nu =
x k

4/_IY=0

T
m

aT

_ r _o

T
m

where

r r=_o n=l

(19)

+ J °_F1 n=l

e'_2X 2[3n
(20)

Upon substituting equations (20) and(18) into equation (19), there results

1o The mixed-mean fluid temperature for a channel uystem is defined as

._"0 b u tdy

t =

m_ob udy
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co 2

2F -_n X 2
---L _. A e
_o n=l n

= , (21)
NUx "_Fo + F1 2

_11/ c°_ An e -0nX [-__o_ J(2_n r_+r Yo d_,F I Jo _F--_ _o_ Yo_l/_In 2_n
n-1

dr

The arithmetic mean Nusselt modulus, Nu , which is based on an arithmet/c
am

mean wall-fluid temperature difference, is expressed as

h 4b
am

Nu ,,-- (22)
am k

where

q 1
h = (23)

am AAt
am

(tw-t) + -o (tw tin)
At -

am 2 (24)

x

q 1_0 k 8_yA = x - " =o
(25)

Upon substituting equations (23), (24), and (25) into equation (22), there results

Nu (26) •
am I + T

m
2
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RESULTS

The eigenvalues and series coefficients for this boundary value problem

were evaluated for a wide range of Reynolds and Prandtl moduli. The quantities

Tin, NUx, and NUam were calculated as functions of the parameter X, and Rey-

nolds and Prandtl moduli.

Appendix 6 (Tables I to VI).

The results are presented in Figures 2 to 20 and in

From the Nu X graphs it may be observed that the

entrance length increases as Reynolds modulus increases. The established

Nusselt moduli, Nuo , are shown as a function of Reynolds and Prandtl moduli, in

Figure 8. The T graphs show that the fluid ter:aperature approaches the wallm

temperature in a shorter distance from the entrance as the Reynolds modulus de-

creases.
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Figure 12.- Tm vs X and Re for Pr = 0.02.
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DISCUSSION

Comparison of Solution with Specific Analytical and Nurlerlcal Work

The well known solution for the special case of flow in a channel under low Rey-.

nolds and Prandtl modult conditions (radial heat flow by conduction only) with a uniform

velocity profile was compared with the general convection solution derived above for a

condition where eddy transfer Is small compared to co_lductlon, namely, Re = 5000 and

Pr = 0. 002; the respective temperature and Nusselt modulus solutions for the two cases

were in complete agreement for all values of X.

The established Nusselt modulus solution for long channels, Nu for uniform
oO

wall-heat-flux conditions by MartineUi (5) was also corlpared to the established Nusselt

modulus results (Figure 8) obtained from the general s_lutton. Figure 21 Illustrates that

the two sets of calculations are in good agreement, anc the uniform wall temperature

2
Nusselt moduli fall about 15 percent below the uniform wall-heat-flux Nusselt moduli.

A discussion of the linear approximation of the complicated eddy diffusivity pro-

file was presented in Appendix 3. It was concluded tha: the agreement between the linear

and actual eddy diffusivity functions in the important heat transfer layers was good. To

substantiate this conclusion further, a numerical analyJis of the convective heat transfer

problem was made with the actual eddy diffusivity funclion for the specific case of Re =

200,000 and Pr = 0.01. The agreement between the antlytical solutions (using the linear

eddy diffusivity function) and the numerical solutions (using the actual eddy diffuslvlty

function) was good. For example, the local Nusselt m,_dull for the two cases shown in Fig-

ure fZ fall within about 10 percent of each other.

2. It has been found (6) that for the case of established flow X -_.othe Nusselt moduli for

uniform wall-heat-flux boundary conditions are a little greater than those quantities for

uniform wall-temperatureboundary conditions; this ret_ult was based on analytical conduc-

tion solutions as well as on numerical turbulence solut ons.
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Figure 22.- Nu X vs X for analytical a_id numerical solutions

(Re = 200,000 and Pr = ().01).
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Compari::on of Solution with Experimental Data

The only experimental heat transfer data that could be found for a uniform wall-

temperature system were those of Itarrison (8) for turbulently flowing mercury in small

diameter pipes with short heating sections. These experimental data occurred in the

3
initial part of the entrance region where the asymptotic solutions (Appendix 5) hold.

These solutions compared favorably with Harrison's experimental results (4) as shown

in Figure 23.

Application

There are a number of practical high-heat-fIux cooling systems to which the con-

veetion solution presented may be applied. One good example is a nuclear reactor core

whose fuel elements are plates which are cooled by a liquid metal. It is possible to cal-

culate ideal fission heat source distributributions in the axial direction in fuel plates of

nuclear reactors which yield maximum uniform fuel plate temperature distributions.

Maximum reactor powers wouhl result from such axial temperature profiles.

Another example is a liquid-metal cooled target of an accelerator. For high-con-

ductivity targets, the power that can be absorbed without exceeding limiting target tem-

peratures can also be determined.

The solution is also applicable to special cooling problems encountered with missile

nose cones and exhaust nozzles of propulsion systems; the excellent heat transfer that can

be obtained in the thermal entrance regions of liquid-metal convection systems can be

used to advantage. In such cases, the liquid metal would flow bc_tween plates (fins) which

would be attached to the heat transfer surface to be cooled.

3. Mean Nusselt moduli, NUam , in tlarrison_s system were from about two to four times

higher than those for established flow values, Nuo.
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APPENDIX 1

LONGITUDINAL HEAT CONDUCTION

Mathematical convection solutions are usually based on the postulate

that the longitudinal heat conduction term is negligible compared with the

convection term. The validity of this premise was investigated for channel

and pipe systems for low Prandtl modulus conditions and uniform velocity

profiles (reference 4). Temperature solutions were derived for the case

where the axial conduction term was not neglected and the results were

compared to the solution for the case where axial conduction was neglected.

The comparison revealed that axial conduction was relatively unimportant

for turbulent flow conditions. For example, it was found that for a Prandtl

modulus of 0. 005 (which represents a practical minimum value for liquid

metals) and the low turbulent Reynolds moduhs of 8,000, the two Nusselt

moduli for a pipe system differed by 2.5 percent at 0.4 of a diameter from

the entrance, 1.3 percent at one diameter from the entrance, and a still

smaller percentage at greater distances from the entrance.



APPENDIX 2

FLUID VE LOCITY DISTRIBUTION

43

The blunt-nosed turbulent velocity distribution in a channel can be

represented satisfactorily by a uniform distribution. In reference 4, entrance

region heat transfer solutions for a channel were presented for low turbulent

Reynolds modulus conditions for both uniform and blunt-nosed (one seventh

power law) velocity distributions. The results are graphed in Figure 24.

Note that the Nusselt moduli for these two profiles 4 differ from each other

by percentages varying from about 6 to 20 over the wide range of Re Pr/X

values shown. The higher difference-percentages correspond to the initial

portion of the entrance region which normally represents only a small

fraction of the total heat transfer surface in the entrance region. However,

if one desires to calculate convective heat transfer in the very initial portion

of the entrance region, where a non-uniform velocity profile should be used,

the asymptotic solutions given in reference 4 can be used. At the higher tur-

bulent Reynolds moduli, the actual turbulent velocity profiles become very

fiat (reference 7); in this region the idealized uniform velocity profile very

closely represents the actual ones.

4. The results for a third velocity profile, the parabola, are also graphed

in Figure 24 for purposes of comparison.
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APPE NDIX 3

EDDY DIFFUI_IVITY DISTRIBUTION

4_

Tile general differential equation describing convective heat trans-

fer for the idealized system described previously Is

U Ox - ay a +[) _yy (27)

This equation can be expressed in a dimensionless form,

- + (28)_)X 9y _yy

The analogy between heat and momentum transfer has been firmly established

in many experimental turbulent-flow systems. Thus it is postulated in this

analysis that heat transfer and momentum transfer eddy dlffuslvltles are

Identical. Momentum transfer eddy dfffusivities (in dimensionless form)
5

for a channel system can be represented as follows:

Laminar Sublayer

(0 < Y < 131.5/Re0"9)-
v

Buffer Layer

(131.5/Re 0" 9 Re 0. 9 c< Y < 789/ ) -- =
V

Outer Turbulent Layer

Re 0. 9 ((789/ < Y < 0.5) -- --"
I/

Inner Turbulent Layer
(

(0.5<Y <1.0) -- =
V

0.9y
0.0076 Re --- 1

b

Y
0. 0152 Re 0" 9(1 -b) _-

0.9
0. 0038 Re

(29)

5. These relations are obtained from the shear stress expression, the

generalized velocity profile for turbulent flow, and the shear equation.

results pertain to smooth channels over a Reynolds modulus range of
3 6

5, _ 10 to 10 .

The
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6
Because the important heat transfer layers are those nearest the wall,

idealized eddy diffusivity function is postulated which approximates the

actual one in that region; the idealized eddy diffusivity relation is,

an

.9..y_ O. 9 _.y_
- C Re = 0.01 Re (30)

v 1 b b

Note, from equation (28), the dimensionless eddy dfffusivity always appears

together with the reciprocal of the Prandtl modulu_ in the form of a sum,

1
--- + -- A comparison of this sum for the actual and idealized eddy dif-
Pr v

fusivity functions is shown in Figure 25 for a typical liquid-metal system.

Note, that in the important outer half of the flow channel, the idealized sum,

1
-- ÷ --, is a good approximation of the actual quantity. Upon substituting
Pr v

equation (30) into equation (28), equation (1) can b_ obtained.

6. The heat transfer layers between the wall and about half the distance

to the duct center are the important ones because a large fraction of the total

r3dial temperature drop is found there. This is true because 1) the radial

hcat flows and 2) the thermal resistances are large in this region in compar-

ison to the central duct core.
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APPENDIX 4

SERII';S EXPANSION OF f(r)

In equation (13) it was found necessary to expand unity into series of

U functions. The known procedure f,)r doing this (see referenceo

9 for example) is discussed here for the case of a general function, f (r). It

lsdestredtoexpandf(r) intoa Uo_ _ r_ sertesintheintervalrltor2,

f (r) = _ A (31)n o
n=l

ffbothsidesofequatlon(31) aremultiplledbytheterm, rUo_-_ _n r_ ,
\ 1

and the equation is integrated from r 1 to r 2, all integrals involving
/_C4 \

U (-_n r) terms with two different values o! _ are zero. Only the
o\F 1 / n

(_ r_ are notintegral having U ° terms with the same values of 0n

zero. Thus the equation for the series eoeffieie,lt is found to be

"Jrr rr f(r) U ( 213n d"

o _,,,F 1
1

A (32)

n r/r
r U ° _-'_'1 dr

1

r_r /_ r_ r_
2 n

The proof that the integral r U ° U °
k,F 1

1

dr

' represent twois equal to zero is outlined below. The quantitie_ _n and _n

different eigenvalues. The proof usually involve_ writing down two differential

Bessel equations for two different solutions, one in terms of 13n and another

in terms of [3'. Upon multiplying each equation l,y the solution of the other
n

subtracting, and integrating over the range r 1 to r 2, there results
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r
2

oJr
1

12F____n_ 12_I Uo_,,-_l r_ dr

F
1

- 0:)
(33)

Upon substitution of equations (5) and (12) into the bracket of equation (33), the

integral is found to be,

r

r o \ F 1 U_kx-_-1 dr - 0

rI

r
2

/ ,. ,)The integral r U ° \F 1
r

1

the original differential Bessel equation is multiplied by 2r

dr is evaluated as follows. If

2 dO°_ r_

dr

(34)

and the resulting equation is integrated by parts over the range rI to r2,

there results,

r

5 2{213 nrOo
r

1

2
F

1

dr

2

r2_ °_rrFl /-/_

2
4_

n 2 2
r U

2 o
F

1

r 2

(35)

_ _rl
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where the limits for the specific problem being studied are

VF O ' F_= + F and r =
r2 1 1 o



APPENDIX 5

ASYMPTOTIC CONVECTION SOLUTION

53-

Equation (17) converges very slowly for small values of X. A general

asymptotic solution has been derived (reference 4) which can be used to

evaluate the temperature and heat transfer in this region. For small values

of X, the turbulent flow system being studied here reduces to the case of

convection over a single fiat plate with radial heat flow being achieved entirely

by conduction. This is true because for small values of X 1) the influence of

heat flow from the other wall would not exist and 2) the thermal boundary

layer would not have diffused into the turbulent flow region. The boundary

conditions for the asymptotic case are

T (X, 0) = 0

lim
T(X,Y) = 0

T (0, Y) = 1

lim
T(X,Y) = 1

y.Qo

(36)

The solution of equation (1) together with the boundary equations (36) can be

accomplished by making a change in variable,

Y
S = c -- (37)

P
x

where p and c are constants to be determined. Upon substituting equation

(37) into equation (1), the solution for the boundary equations (36) is found

to be (reference 10)
w 2

e dw

(38)
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where

Ub 'w = 4aX Y (39)

Further it can be shown that for small values of X,

and

Nu X

Re1/2 prl/2
(40)

Nu

am

2 Re I/2 prl/2
ms (41)

CONVAIR,
A Division of General Dynamics Corpor_.tion,

San Diego, Calif., 5_y 1958.
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